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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Neutrino radiation fields in general relativity 

J. B. GRIFFITHS and R. A. NEM’ING 
Department of Applied Mathematics, University College of North Wales, 
Bangor, Wales 
MS. received 29th October 1970 

Abstract. It is shown that there exist Einstein-neutrino fields which are not 
defined uniquely by the metric of space-time. These fields form a subclass 
of the neutrino pure radiation fields and are analogous to Peres’ exceptional 
case for Einstein-Maxwell null fields. 

1. On the uniqueness of the neutrino field 
In  the theory of geometrodynamics it has been found possible to describe 

gravitational and electromagnetic fields purely in terms of metric concepts. In  fact, 
if the metric tensor of a space-time describing such fields is known then the field is 
determined exactly, apart from a constant duality rotation-except for Peres’ excep- 
tional case (Peres 1961, Geroch 1966)-that is, for twist-free null electromagnetic 
fields. 

The analogous case of combined gravitational and neutrino fields has not been so 
thoroughly investigated. However, we can state the following theorem, which has 
been partially arrived at by Bergmann (1960). 

Theorem 1. If a space-time admits a neutrino field and the neutrino flux vector is 
prescribed, then the neutrino spinor field is uniquely determined up to a constant 
phase factor by the metric of space-time. 

In  general, however, the neutrino flux vector will not be prescribed and there will 
exist space-times in which the neutrino field is not uniquely determined. This 
situation is best described by the following theorems. 

Theorem 2. If a given space-time admits an Einstein-neutrino field with positive 
energy density and flux vector I,, and also a second field with flux vector e2@lU, then 
the fields are both pure radiation fields. 

Theorem 3. If a given space-time admits a pure-radiation Einstein-neutrino field 
with flux vector I, = XU,,, where X and U are scalar functions, and if the Ricci 
tensor of the space-time is of the form 

R,, = XF(U)U,,U,, 

then the space-time admits a multiplicity of neutrino radiation fields with flux 
vectors 2, = Xf( U )  U,, where f( U )  is an arbitrary function of U. The neutrino field 
is then not determined uniquely by the metric. 

An example of this case is the exact solution given by Griffiths and Newing (1970) 
in which X = 1 and coordinates are chosen so that U = x1. A more complete 
examination of the uniqueness of the neutrino field will be considered in a later paper, 

2. Proof of the theorems 
Let the spinor f A  define the neutrino field. Then if the flux vector I, (for notation 

see Griffiths and Newing 1970) is prescribed, the only other spinors which could 
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describe the neutrino field have the form 

<; = e'yA. 

Xow the energy-momentum tensor for the neutrino field is 

and so 

Thus since the Ricci tensor of the space-time, and hence E,,, is known, tA' can only 
describe a neutrino field if 7) is a constant. This establishes theorem 1. 

Suppose that in a given space-time I ,  and e2@lu both define neutrino fields. If the 
spinor tA defines the first field then e*tA, where 4 = $ + iq, defines the second. Since 
both spinor fields satisfy the neutrino equation 

we require that 

In  terms of the tetrad (defined in Griffiths and Newing 1970) this can be represented as 

= 2i(u(~ABtA)v)fk- u(uABtbI~kA) 

E,,? = E,, -2(1,7),v+q,ulv). 

t A i A B  = 0 (e*tA),AB = 0 

dl A b  = fA(afb + bxfi)* 

= al,+bfi,. (2.1) 
The energy-momentum tensors of the two fields are given by 

E,, = 2i(u(u*4BtAlv)tfi- u(fiAbtBlr)tA) 
(1) 

and 

E,, = 2ie2IY(u(UAE'talv)tB - O(,ABtk,y) tA + k U 4 , L . )  - k u $ , v , ) .  
(2) 

Thus 
E,, = e2${Euv +2i(a - ci)l,l, +2ibl(,%,,) - 2i61~,mV)}. 
(2) (1) 

But since the two fields have the same energy-momentum tensors we can put 

(1 - ed2@)E uv = - 2i(a - ci)l,l, - 2ibl@,,) + 2i61(,mV). 

If the field has positive energy density then we must have b = 0. This has been 
shown by Griffiths and Newing (1971) and independently by Wainwright (to be 
published). Both fields therefore are pure radiation fields. This completes the proof 
of theorem 2. 

= hU,, and that 
the energy-momentum tensor is 

Suppose now that we have a radiation field with flux vector 

E,, = -xF(u)U,,u,v 
where F( U )  is some given function of U. The space-time mill admit a second field 
with flux vector I,,,, = he2@U,, if 

2ih(a - 6) 

(1 - e - 2 # )  
F ( U )  = 

and (2.1) is satisfied with b = 0. Now put a = x+iy, then 

$,a = xl, = xxu, ,  T,a  = yla = yxO-,i;, 
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and hence $, 7, x h  and yh  must all be functions of U. From (2.2) we have 

and this equation may be taken to define y for anyarbitraryfunction $ of U. Theorem 3 
then follows. 
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